If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+42t+2.5=0
a = -4.9; b = 42; c = +2.5;
Δ = b2-4ac
Δ = 422-4·(-4.9)·2.5
Δ = 1813
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1813}=\sqrt{49*37}=\sqrt{49}*\sqrt{37}=7\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-7\sqrt{37}}{2*-4.9}=\frac{-42-7\sqrt{37}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+7\sqrt{37}}{2*-4.9}=\frac{-42+7\sqrt{37}}{-9.8} $
| y−12=41 y−4 | | 2v-2.1=10.7 | | 5(u+1)=4u | | -7=n+9 | | -2x-8x=-10x+1 | | 15r=-180 | | –9j=–5−9j | | -5.2=u/5+7.3 | | -8=-2(m-6) | | 4x-2=+7 | | y=2(10)-2 | | -20=n-13 | | 2.4a-2.2=-0.4(1-6a) | | 5-3(g+1=5 | | 8+2(x+3)+4x=66 | | y=2(7)-2 | | 6=m÷3=9 | | -3=5w=-83 | | 13x-14=46+8x | | 90=32(2x-12) | | 3/4(x)1.72=-6.82 | | 5(5n-4)=34+7n | | r/3-7=4 | | 4=5(x+4)-5x | | 2(s+1)-5=5 | | -7x+1=6x+3 | | 5(w-3)+2w=27 | | 7+8x=10+7x | | 20.5=-2.5b | | 9.6-3.3g=-4.2g+4.02 | | 8-2)2x=+1)+5x | | 12x+15=24–6x. |